Самодельная инфракрасная паяльная станция своими руками

Содержание

инфракрасная паяльная станция своими руками — Инструкции

Самодельная инфракрасная паяльная станция своими руками

Иногда бывает недостаточно хорошо владеть паяльником или паяльным феном. Для пайки bga микросхем нужна инфракрасная паяльная станция, но это очень дорогое профессиональное оборудование, которое не всем по карману. В этой инструкции я расскажу о том, как инфракрасная паяльная станция своими руками легко доступна к постройке заинтересованным человеком.

Коротко о том, что такое ик паяльная станция: это такой инструмент, позволяющий припаивать микросхемы с выводами не в виде отдельных ножек, а в виде массива шариков припоя. Это центральные процессоры ноутбуков, чипы в телефонах и видеокартах и многое другое. В заводском исполнении такая станция стоит от 400 до 1500 долларов в среднем.

Шаг 2. Нижний нагреватель: рефлектор, лампы и корпус

бытовой обогревательотражатели и новый корпускорпуссоединяем проводами
готовый нижний нагреватель для ик паяльной станцииразъемы выключательдержателиобщий вид нижнего нагревателя

Найдите старый галогеновый обогреватель, вскройте его и возьмите рефлекторы и четыре галогеновые лампы.

Будьте осторожны, не разбейте лампы! Теперь вам нужно приложить воображение и придумать, какой корпус будет у нижнего нагревателя. Вы можете использовать корпус от старого ПК или сделать как я. Я взял алюминиевые уголки толщиной 1 мм.

Они отлично вместили в себя рефлекторы и лампы, а так-же обеспечили требуемую жесткость конструкции.

Этот обогреватель вмещает в себя 4 штуки 450 ваттных лампы, подключенных в параллель. Используйте штатную проводку обогревателя чтобы подключить их уже в новом корпусе.

Шаг 3. Нижний нагреватель: система удержания печатных плат

лапы держателя платгайкагайка вид сверху
гайка вид снизуболт прижималапа держателя плат в сборе
плата установленная в держателяхкрупным планом место прижима платыдругой ракурс

После того, как вы закончите корпус для нижнего нагревателя, вам будет необходимо установить систему крепления печатных плат. Состоит она, в моём случае, из отрезков профиля, использовавшегося как держатель занавесок. Нужно отрезать шесть кусков этого профиля, с примерными размерами как на фото. В качестве удерживающего элемента используются импровизированные гайки, сделанные из металлической перфорированной ленты, которую можно купить в хозяйственных магазинах. Такая система крепления позволяет в достаточно широких пределах закреплять и перемещать печатные платы разнообразных размеров, используя лишь отвертку для откручивания-закручивания гаек.

Шаг 4. Нижний нагреватель. Держатели термопар

крепление гибкого шлангапродеваем стальную проволокумоток стальной проволокишланг от душа

Для того, чтоб наша инфракрасная паяльная станция, сделанная своими руками, функционировала должным образом, она должна поддерживать заданный температурный профиль нагревания и охлаждения. Иначе это может привести к растрескиванию печатных плат, перегреву микросхем и прочим не менее неприятным последствиям. Для контроля профиля нагрева служат две термопары, которые должны контролировать температуру снизу и сверху паяемой платы.

Чтобы термопары были достаточно подвижными и удобными к расположению я придумал отличный способ их крепления.

Для этого нам понадобится пара гибких душевых шлангов, немного отожженной стальной проволоки (она гибкая и сохраняет форму после изгиба, в отличие от не отожженной).

В гибкий шланг нужно продеть кусок стальной проволоки и провода для термопары. Затем один конец гибкого шланга нужно прикрутить к корпусу нашего нижнего нагревателя.

Шаг 5. Верхний нагреватель

подключение ик головки паяльной станцииик головка паяльной станции и корпус

В качестве верхнего нагревателя я использовал керамический нагреватель мощностью 450 ватт. Вы можете купить такой на алиэкспрессе в разделе запасных частей для паяльных станций.

К этому нагревателю из тонкого листового железа нужно согнуть корпус, примерно такой как у меня на фото. Корпус очень важен для организации хорошего и правильного потока воздуха.

PS: Процесс нахождения констант P, I и D это неприятная процедура в данном случае, потому как керамический нагреватель нагревается и остывает довольно долго.

Шаг 6. Верхний нагреватель: держатель

настольная лампакрепим головкукрепление ик головкипосадочное место конструкции ик головки

Найдите у себя или купите б\у настольную лампу примерно такого вида. От нее нам понадобится механизм ноги.

Учитывая то, что ик головка инфракрасной паяльной станции должна доставать до любого угла нашего нижнего обогревателя, сначала следует прикрепить ик головку к держателю.

А затем уже выяснить из какого положения крепления она легко перемещается по всей поверхности нижнего нагревателя инфракрасной паяльной станции.

 Крепление держателя к нижнему нагревателю можно выполнить из кусочка пвх трубки, приверченной с помощью хомута к корпусу.

Шаг 7. Arduino PID контроллер

корпус контроллераардуино и релеразъемы и охлаждениемама разъем термоголовки
не пинайте за монтажфинальный вид контроллераконтроллер вид на дисплейконтроллер вид сзади

Теперь вам нужно или найти готовый или сделать самостоятельно из листового металла корпус для контроллера инфракрасной паяльной станции. В этом корпусе поместятся: 2 твердотельных реле, Arduino ATmega2560, дисплей, блок питания для ардуино а так-же разнообразные кнопки и и разъемы.

Так как я не знал, насколько сильно будут греться твердотельные реле, я приделал им по радиатору. Для обдува радиаторов и внутренностей контроллера я поставил на задней стенке контроллера вентилятор.

В ниже преложенном коде всё очень подробно объяснено что и как с чем соединяется. Монтаж очень простой.

Как пользоваться контроллером: Тут нет автонастройки значений P, I и D, так что вам придется задать их именно для вашей инфракрасной паяльной станции. Есть 4 профиля.

 В каждом из них Вы устанавливаете количество шагов, скорость роста температуры (C / S), dwel (время на шаг ожидания), нижний порог нагревания, целевая температура на каждом шагу и P, I и D значения для нижнего и верхнего нагревателя.

 Если вы установите, например 3 шага, 80,180 и 230 ° для нижнего нагревателя с порогом 180, Ваша плата не будет нагреваться только от нижнего нагревателя до 180 °, она нагреется со 180 от нижнего и продолжит греться до  230 с верхнего нагревателя.

Скетч вы можете скачать по ссылке ниже.

https://www.dropbox.com/s/5inxb76xgkeun43/Arduino%20Rework%20Station.rar?dl=0

Я специально не стал объяснять создание такой штуки, как инфракрасная паяльная станция своими руками очень детально, потому-что ваша конструкция почти наверняка будет отличаться от моей. Даю свою инструкцию лишь как пример самостоятельной постройки ик паяльной станции.

Как обычно говорят, жмите лайки и репостите запись в соц сетях если вам понравилась моя инструкция.

Источник: https://instructables.info/infrakrasnaya-payalnaya-stantsiya-svoimi-rukami/

Инфракрасная паяльная станция своими руками: устройство, принцип работы, примеры создания

С появлением микропроцессорной техники возникла необходимость при ремонте сталкиваться с перепайкой BGA микросхем, что привычными методами сделать или крайне сложно, или, чаще, невозможно.

Даже фен не всегда поможет справиться с поставленной задачей.

Именно поэтому изготовление инфракрасной паяльной станции своими руками будет наилучшей альтернативой и порой единственным актуальным решением.

Микросхемы BGA (Ball grid array) присутствуют практически в любом современном «умном» устройстве: телефоны, компьютеры, телевизоры, принтеры. В процессе эксплуатации они могут выходить из строя, что требует замены неисправной части на новую. Но такую процедуру осуществить без специального оборудования — задача крайне сложная.

Проблема заключается в том, что производители изобретают всё новые и новые методы для монтажа электронных деталей. И обычный паяльник или фен не всегда смогут помочь в решении такой проблемы. Ведь контактные шарики способствуют высокой теплоотдаче на плату, в результате чего они не могут расплавиться.

Если пытаться поднять температуру до необходимой для их плавления, то появляется риск перегреть микросхему, в результате чего она может выйти из строя. Вследствие перегрева не исключена и возможность повреждения близлежащих деталей. Особенно если их корпусы выполнены из легкоплавких материалов.

Отличным решением может выступить инфракрасная станция. Она позволяет производить замену даже крупных GPU контроллеров. А с широким распространением компьютеров, ноутбуков, материнских плат, видеоадаптеров и другой сложной техники такие работы при ремонте выполняются достаточно часто.

И если раньше для замены крупных микросхем можно было использовать термовоздушные станции, то сейчас, когда производители используют бесконтактные методы пайки, единственным оптимальным решением является ИК станция, способная качественно справиться с заменой любой микропроцессорной детали.

Принцип действия

Основными проблемами при перепайке микросхем и контроллеров является или недогрев до температуры плавления контактного материала, или перегрев заменяемой части и её выход из строя.

Так пришла идея нагревать до температуры 100–150 градусов Цельсия непосредственно саму плату. После чего уже производить пайку деталей. Это позволяет качественно снизить теплоотток на текстолит платы, что даёт возможность понижать и «верхние» температуры. А значит, и сама деталь будет меньше подвергаться перегреву.

Производить нагрев можно и термофеном, но использовать инфракрасный паяльник предпочтительнее. Ведь ИК станция позволяет делать это контролируемо, то есть следить и поддерживать «низ» и «верх» температур или использовать рекомендуемый термопрофиль пайки.

Читайте также  Самодельный колун для колки дров

Конструктивные особенности

Любые ИК паяльные станции состоят из трёх основных частей. Выглядит всё довольно просто, хотя каждая из них является самостоятельным сложным механизмом, объединённым с общей установкой. Так, любая станция включает в себя:

  1. Контроллер управления, регулирующий весь процесс нагрева;
  2. Нижнюю подогревающую часть;
  3. Верхний подогреватель.

В зависимости от модели и производителя, ИК паяльники могут отличаться лишь техническими характеристиками. Одни делают работу проще, другие, напротив, требуют от пользователя дополнительного внимания и трудозатрат.

Влияет это и на стоимость оборудования. Поэтому, выбирая станцию требуется обращать внимание не только на цену, но и на технические данные, чтобы не переплачивать за ненужный функционал.

Изготовление своими руками

Производствам или лицам, занимающимся ремонтом сложной электронной аппаратуры, вполне можно приобрести для работы заводскую паяльную ИК станцию. А вот любителям или тем, кому такая установка нужна изредка, можно создать её своими руками.

И в пользу этого, в первую очередь, говорит цена. Даже приборы китайского производства имеют стоимость от 1 тыс. долларов. Качественные же модели европейских марок от 2 тыс. долларов и выше.

Позволить себе столь дорогое удовольствие сможет далеко не каждый.

Касательно самодельной инфракрасной паяльной станции всё выглядит значительно оптимистичнее. По средним расчётам, такой аналог ИК паяльника обойдётся в пределах 80 долларов, что выглядит несравнимо более приемлемо цен на заводские приборы.

Любой человек, занимающийся ремонтом сложной техники, имеет достаточно знаний, чтобы придумать и сконструировать ИК станцию самостоятельно. В связи с этим электронная часть, внешний вид и некоторые возможности могут отличаться.

А вот основная конструкция останется в любой модели одинаковой. Именно поэтому не существует единой идеальной схемы, которую можно привести в качестве единственного верного решения. Но для того чтобы понять сам принцип создания ИК паяльника, подойдёт любая модель.

А уже основываясь на личных знаниях и предпочтениях, можно убрать или добавить те или иные части.

Первый вариант

В этом варианте будет использоваться двухканальный контроллер.

  1. Первый канал задействован для платинового терморезистора Pt 100 или обычной термопары.
  2. Второй канал будет использоваться исключительно термопарой. Каналы контроллера могут работать в автоматическом или ручном режиме.

Температура может поддерживаться в пределах от 10 до 255 градусов Цельсия. Термопары или датчик и термопара посредством обратной связи контролируют эти параметры в автоматическом режиме. В ручном режиме будет регулироваться мощность на каждом из каналов от 0 до 99 процентов.

Память контроллера будет содержать 14 различных термопрофилей для работы с BGA микросхемами. Семь из них предназначены для свинецсодержащих сплавов, а другие семь для припоя без содержания свинца.

В случае со слабыми нагревателями верхний может не успевать за термопрофилем. В таком случае контроллер поставит выполнение на паузу и будет дожидаться, пока наберётся необходимая температура.

Также контроллер очень удобно выполняет термопрофиль на основании температуры преднагрева всей платы. Если по той или иной причине снять чип не получилось, то можно повторно запустить его с более высокой температурой.

Силовой блок, изображённый на схеме, имеет транзисторный ключ для верхнего нагрева и семисторный для нижнего. Хотя приемлемо использование двух транзисторных или симисторных. Участок, отмеченный красным пунктиром, можно не собирать, если рассчитывается использование двух термопар.

Для теплоотвода от ключей можно использовать радиатор с активным охлаждением от любой техники. Главное, чтобы он подходил под конструкцию моделируемого аппарата.

Нижний нагреватель будет состоять из девяти галогеновых ламп номиналом 1500 Вт 220–240в R7S 254 мм. Должно получиться три части по три лампы, соединённых последовательно.

Провода лучше использовать высокотемпературные силиконовые на 220 вольт.

Корпус собирается из стеклотекстолита или любого другого похожего материала и усиливается алюминиевыми уголками. А также придётся купить и вакуумный насос. Для более эстетичного внешнего вида можно использовать ИК стекло на нижней панели.

Но здесь существует сразу несколько отрицательных моментов: слишком медленный нагрев и остывание, и вся конструкция в процессе работы чересчур нагревается.

Хотя наличие стекла не только делает прибор более привлекательным, но и удобным, так как платы можно класть прямо на него.

Стойка выполняется из алюминиевого швеллера для стоек. Подготавливаются вакуумный пинцет и трубка для него, термопара и стойки. Верхний нагреватель рекомендуется сделать из ELSTEIN SHTS/100 800W. Когда все детали готовы, их нужно разместить в корпусе и можно переходить к настройке.

Нагреватели устанавливаются на расстоянии 5–6 сантиметров от плат. Если температурный выбег больше трёх градусов, то стоит понизить мощность верхнего нагревателя.

Второе решение

В качестве второго варианта можно предложить конструкцию, отличающуюся лишь внутренними составляющими. И сначала стоит подготовить все необходимые комплектующие:

  • Верхний нагреватель – ИК головка на 450 Вт;
  • Нижний нагреватель – четырёхламповый галогеновый обогреватель 1800 Вт;
  • Уголки из алюминия;
  • Материал для корпуса – стеклотекстолит, корпус от старой аппаратуры, ПК или другое подобное;
  • Стальная проволока;
  • Спиральный шланг для душа;
  • Ножка от настольной лампы;
  • Плата Arduino Atmega 2560;
  • Две термопары;
  • Два твердотельных реле;
  • Блок питания с 220 вольт на 5 вольт. Подойдёт от зарядного устройства для телефона;
  • Зуммер на пять вольт;
  • Символьный дисплей;
  • Гайки, винтики, провода и другая необходимая мелочь.

Главное, сразу определиться с видом корпуса. Естественно, что много зависит от наличия подходящего материала. Поэтому именно от этого стоит отталкиваться, когда приходит время располагать комплектующие внутри.

Теперь нужно взять галогеновый обогреватель. Возможно получится найти уже старый, так как его необходимо разобрать и извлечь рефлекторы и галогеновые лампы. Сами лампы разбирать не нужно. Теперь всё это потребуется поместить в заготовленный корпус.

Используется всего 4 лампы по 450 ватт, подключаемых параллельно. Провода предпочтительнее использовать те же, которыми они уже были подключены. Если по каким-либо причинам использовать их возможности нет, то придётся купить дополнительно термостойкие.

Сразу придётся подумать и о системе удержания плат. Конкретные рекомендации давать здесь сложно. Ведь всё зависит от корпуса.

Но хорошо бы использовать алюминиевые профили, в которые не жёстко вставляются болты с гайками таким образом, чтобы впоследствии можно было ими зажимать печатные платы и, одновременно, была возможность регулировки под разные размеры плат.

Термопары, контролирующие заданную температурную схему в нижнем нагревателе, лучше пропустить в душевой шланг. Это даст подвижность и удобство в процессе работы и монтажа.

Роль верхнего нагревателя будет исполнять керамический мощностью 450 ватт. Такой можно купить как запчасть для ИК станций. Здесь же нужно позаботиться и о корпусе, так как именно он обеспечивает правильный и качественный нагрев. Сделать его можно из тонкого листового железа, согнув нужным образом, в зависимости от формы и размера нагревателя.

Теперь нужно подумать и о креплении верхнего нагревателя. Так как он должен быть подвижным, причём перемещаться не только вверх или вниз, но и под разными углами. Отлично подойдёт стойка от настольной лампы. Закрепить её можно любым удобным способом.

Пришло время заняться контроллером. Для него тоже понадобиться отдельный корпус. Если есть подходящий уже готовый, то можно использовать его. В противном случае придётся его сделать самостоятельно всё из того же тонкого металла. Твердотельные реле нуждаются в охлаждении, поэтому стоит установить к ним радиатор и вентилятор.

Так как автоматической настройки в контроллере нет, то значения P, I и D придётся вводить вручную. Здесь есть четыре профиля, для каждого отдельно устанавливается количество шагов, скорость роста температуры, время и шаг ожидания, нижний порог, целевая температура и значения для верхнего и нижнего нагревателя.

Источник: https://220v.guru/fizicheskie-ponyatiya-i-pribory/payalniki/infrakrasnaya-payalnaya-stanciya-svoimi-rukami-osobennosti-ustroystva.html

Инфракрасная паяльная станция своими руками

Радиолюбителям рано или поздно приходится сталкиваться с пайкой элементов посредством массива шариков. BGA способ пайки используется повсеместно в массовых производствах различной техники.

Для монтажа используется инфракрасный паяльник, который производит соединение деталей бесконтактным способом.

Готовые модификации стоят дорого, а более дешевые аналоги не обладают достаточным функционалом, поэтому возможно изготовить паяльник в домашних условиях.

Инфракрасная паяльная станция своими руками

Описание процесса ИК пайки

Принцип работы инфракрасной паяльной станции заключается в воздействии сильными волнами длиной 2-7 мкм на элемент. Устройство для пайки самодельными ИК паяльными станциями как самодельными, так и приобретаемыми, состоит из нескольких элементов:

  • Нижний нагреватель.
  • Верхний нагреватель, отвечающий за основное воздействие на материалы.
  • Конструкция держателя платы, размещенная на столе.
  • Контроллер температуры, состоящий из программируемого элемента и термопары.

Длина волны, напрямую зависит от температурных показателей источника энергии.

Материалы в различной форме подвергаются пайке с помощью ИК станции, сделанной своими руками, существуют основные параметры передачи энергии, непрозрачность, отражение, полупрозрачность и прозрачность.

Перед изготовлением ИК паяльной станции своими руками нужно понимать, что существуют некоторые недостатки данных систем:

  • Разная степень поглощения энергии компонентами ведет за собой неравномерный прогрев.
  • Каждая плата ввиду различных характеристик требует подбора температур, в противном случае, компоненты перегреваются, выходят из строя.
  • Наличие «мертвой зоны», где инфракрасная энергия не достигает требуемого объекта.
  • Обязательное условие защиты поверхностей остальных элементов от испарения флюсов.

Нагревание происходит за счет передачи тепла к монтажной плате. Тепловое воздействие инфракрасной станцией происходит поверх детали, температуры бывает не достаточно, поэтому конструкция подразумевает нагрев нижней части. Нижняя часть состоит из термостола, процесс пайки может осуществляться посредством спокойного инфракрасного излучения, либо потоком воздуха.

Профессиональное оборудование стоит достаточно дорого, более дешевые аналоги не обладают достаточным функционалом. Для экономии средств, выполнения нужных операций с BGA контроллерами, возможно изготовить инфракрасную паяльную станцию своими руками.

Сборка возможна из доступных на рынке и подручных материалов. Конструкция представляет собой изготовленный из старого светильника термостол, оснащенный лампами галогенового типа.

Инструменты для изготовления инфракрасного паяльника

Термостол потребует наличие отражателей, галогеновых ламп, размещенных в корпусе из профиля или листового металла.

При изготовлении инфракрасной паяльной станции своими руками, стоит придерживаться чертежей, которые возможно разработать самостоятельно или позаимствовать у других исполнителей.

Обязательно корпус снабжается местом для термопары, которая передает информацию на контролер для предотвращения резких перепадов температуры, избыточного нагрева материала.

Сборка ИК паяльной станции подразумевает самодельные конструкции в виде крепежа из штатива. Контроль температуры нагревательного узла производится второй термопарой.

Устанавливается параллельно с нагревателем, штатив закрепляется на панели таким способом, чтобы ИК элемент можно было перемещать над поверхностью термостола. Расположение платы производится выше галогеновых ламп на 2-3 см, в корпусе термостола.

Крепление производится кронштейнами, для изготовления возможно использовать ненужный алюминиевый профиль.

Принципиальная схема контроллера для инфракрасной паяльной станции своими руками

Изготовление паяльной лампы своими руками в первую очередь потребует корпус. Для охлаждения системы требуется монтаж одного мощного или нескольких кулеров, материал желательно выбрать из оцинкованной стали. После полной сборки производится наладка системы путем запуска схемы, отладки устройства.

Нижний подогрев

Нижний подогрев может быть изготовлен несколькими способами, но гораздо лучшим вариантом является использование галогеновых ламп.

Рациональным решением является установка своими руками ламп суммарной мощностью от 1 кВт. По бокам конструкции устанавливаются порожки, которые зафиксируют плату.

Установка материалов для пайки производится на швеллер, для более мелких деталей используются подложки или прищепки.

Нижний подогрев

Верхний подогрев

Известно, что верхний нагреватель подходящего качества невозможно изготовить своими руками. Для достижения наилучшего результата в процессе ИК пайки, необходимо воспользоваться керамическими нагревательными элементами.

Для инфракрасной паяльной станции, изготовленной своими руками оптимальным вариантом является использование нагревателя ELSTEIN. Производитель показывает наилучшие результаты, спектр излучения идеально подходит для замены BGA плат, других деталей.

Не рекомендуется экономить на покупке верхнего нагревателя — обогревателя при сборке паяльной станции своими руками, т.к. при работе некачественным инструментом возможно повреждение платы или собранной конструкции.

Верхний подогрев

Конструкция для верхнего подогрева возможна из самодельной станины. Достаточно иметь регулировку по высоте и широте для комфортной работы на инфракрасной паяльной станции, изготовленной своими руками. К штативу крепится термопара для контроля температуры.

Блок управления

Корпус контроллера подбирается по размерам в соответствие с устанавливаемыми деталями. Подходящим вариантом может оказаться кусок листового метала, который без труда возможно отрезать ножницами по металлу.

Размещается в блоке управления также вентиляторы, различные кнопки, а также дисплей и сам контроллер.

В роли контроллера выступает Arduino, функциональность вполне достаточна для выполнения пайки BGA схем своими руками.

Блок управления

Детали для самодельного прибора

Перед сборкой любого оборудования своими руками, необходимо подготовить материалы и инструменты. Для инфракрасного паяльника понадобятся:

  • Комплект галогеновых ламп, количество которых зависит от формы будущего нижнего нагревателя паяльной станции, оптимальное количество подбирается в диапазоне от 4 до 6 штук.
  • Керамическая инфракрасная головка мощностью не менее 400 ватт для верхнего нагревателя.
  • Шланг от душевой лейки для проводов, алюминиевые уголки.
  • Стальная проволока, крепежный элемент от старого фотоаппарата или настольной лампы для изготовления штатива.
  • Контроллер Arduino, 2 реле и термопары, а также блок питания выходом 5 вольт, который можно изготовить от зарядного устройства мобильного телефона.
  • Винты, разъемы и дополнительные периферии.

Инфракрасная паяльная станция своими руками на основе Arduino

В процессе сборки понадобятся чертежи, разобрать которые помогут элементарные знания в электронике.

Применение и устройство

Инфракрасный паяльник используется в основном при условиях отсутствия доступа к заменяемым компонентам.

Применяется при замене мелких деталей, основным достоинством является отсутствие нагаров и прочих отложений, как при работе обычным паяльником, а также малая возможность повредить соседние элементы.

Для домашнего использования возможно изготовить паяльник своими руками, используя прикуриватель от автомобиля.

Инфракрасная паяльная станция промышленного производства

Работа устройства происходит при питании 12 вольт, такое напряжения возможно получить путем использования преобразователя или не нужного блока питания для компьютера.

Изготовление

Перед сборкой паяльной станции, извлекается из корпуса прикуривателя нагревательный элемент. К контактам питания присоединяются провода питания, к центральному проводу возможно подвести медный провод с изоляцией. Сделать паяльник не составит большого труда, достаточно изолировать соединение на расстоянии от нагревательного элемента, возможно использовать термоусадочную трубку.

Термоусадочная трубка

Корпус производится из тугоплавкого материала. Возможно воспользоваться нерабочим паяльником или приобрести кусок стали. Необходимо следить за отсутствием соприкосновения проводов. Важно понимать, что подобного рода устройство используется при незначимых работах, так как температурные пороги, другие параметры не контролируются.

, пожалуйста, выделите фрагмент текста и нажмите Ctrl+Enter.

Источник: http://StankiExpert.ru/spravochnik/svarka/infrakrasnaya-payalnaya-stantsiya-svoimi-rukami.html

Самодельная ИК паяльная станция

Паяльник — это хорошо. Хорошо для DIP деталей, ну для тех для которых сверлят отверстия в платах. Спору нет, паяльник отлично подходит и для SMD компонентов, но для этого необходимо иметь черный пояс в этой дисциплине. А вот как, раз в год выпаять, а потом запаять многоногую smd микросхему без особых навыков и оборудования? Ну тогда читаем дальше…

Меня всегда пугали многоногие smd микросхемы, в части монтажа, а не внешностью, в корпусах QFP и разные SO-шки, про BGA даже заикаться не буду. Был однажды неудачный опыт, делал часы, и заложил в конструкцию контроллер в корпусе SO.

В процессе отладки что-то пошло не так и мне пришлось его перепаивать. Первый демонтаж плата и контроллер условно выдержали, а вот после второго, плата и контроллер отправились в мусорный бак. В итоге поставил микросхему в dip корпусе и мои мучения закончились.

Это все к чему, шарясь как-то по интернету, случайно попал в ветку форума forum.easyelectronics.ru, откуда перенаправился на radiokot.ru. После посещения радиокота я и загорелся идеей сделать «Прикуяльник» (® by radiokot.ru).

Именно прикуриватель в качестве паяльника и будет источником инфракрасного излучения.

Пошарив по закромам отыскал трансформатор от бесперебойника, который мне когда-то подарил ALXSYS. Этот трансформатор работал в режиме преобразования 12 — 220 В, значит заработает и в обратном направлении.

Источник питания есть! А это уже пол дела. Осталось найти прикуриватель, и он был найден на местном рынке за символическую цену. Прикуриватель подойдет любой, хоть от мерседеса, хоть от жигуля.

К стати, у запорожца, этого очень важного девайса, не было. Подключать излучатель к трансформатору решил через ШИМ регулятор, как в дальнейшем оказалось не зря. Выбрал схему на распространенной микросхеме NE555.

По опыту других пользователей, она менее капризна.

Микросхема NE555, в соответствии с даташитом, питается постоянным напряжением в диапазоне 4,5 — 16В. Так же можно рассмотреть чуть боле капризную схему на UC384x. они довольно часто встречаются в импульсных блоках питания, компьютерные не исключение.

Печатную плату решил не делать, слишком большая честь для трех проводов. Собрал на макетке.

Пришлось придумывать выпрямитель. Диодный мост собран на диодах шотки, которые были выдраны из сгоревшего компьютерного блока питания. На всякий случай все усажено на радиатор, мы ж не китайцы, нам не жалко. Сгоревшие компьютерные блоки питания просто превосходная вещь, источник корпусов и всяких деталюх с радиаторами!

Подключив диодный мост к трансформатору и замерив напряжение холостого хода, немного взгрустнул. Нет, напряжение было достаточное, даже чересчур, 20 В на холостом ходу.

Многовато для моего ШИМ регулятора. Знал бы, то сделал плату на UC3842, она начинает работать от 16В и выше. Но погрустил и ладно, добавил к питанию КРЕН8А (КР142ЕН8А, аналог L7808….

), на нее же повесил и вентилятор охлаждения.

У меня как всегда, минимум, а хочется максимум. Сделаю я наверно и нижний подогрев. Обойдемся бютжетнинько. Нижний подогрев будет на основе галогенного прожектора, станция ведь не для постоянного использования. Для галогенной лампы нужен регулятор мощности, иначе сожжет все на свете, проверено.

Думал заказать в китае тиристорный регулятор, но время. Купить в городе, значит переплатить. По случаю зашел в местный магазинчик промтоваров, там есть много всякой ерунды. И заметил на прилавке осветительный димер. На фоне всех остальных электроинсталяционных изделий, он отличался невзрачным внешним видом и ценой.

Заявленная мощность 600 Вт меня порадовала. Купил его всего за 35 грн (1,3$).

Посмотрим, что у него внутри. Не замысловатая конструкция, собранная на двух тиристорах BT136 соединенных параллельно. Отличное резервирование и запас по мощности. Но почему с такими деталями и всего 600 Вт?

А вот теперь видно почему. Вот смотрю и думаю… Потенциал в нашей стране огромный, а вот руки…

Пришлось помыть плату, все заново пропаять, усилить силовые дорожки и поменять радиатор. На фотографии ниже, видно под оранжевым тумблером, просматривается новый радиатор димера.

Парочка фоток, как оно у меня разместилось в корпусе от компьютерного БП. Радиаторов конечно многовато, они несколько избыточны.

Лицевая панель из куска поликарбоната (оргстекло). Белую защитную пленку не снимал, это придает ощущение, что оргстекло белое, а не прозрачное. И потрошки не просвечиваются.

А на этой фотке уже установлена верхняя крышка. И тут впервые появляется сам виновник торжества — собственно прикуяльник.

Прикуриватель прикручен к сгоревшему паяльнику. Все внутренности паяльника демонтированы.

Крепления нагревательного элемента к основанию выполнено через отожженную стальную проволоку, намотанной в виде спирали для улучшения теплоотвода. Раскаляется он будь здоров и плавит изоляцию провода, так что прикручивать медный провод на прямую не стоит даже и пытаться.

Читайте также  Самодельный гибочный станок для профильной трубы

Нижний подогрев. Здесь особых конструктивных особенностей нет. В качестве нижнего подогрева выступает галогенный прожектор. Устойчивости прожектору придают три ножки с резиновым основанием.

Как известно конструкция на трех ножках никогда не будет качаться, доказано в геометрии — через три точки можно построить только одну плоскость.

Стекло сверху накрыто медной фольгой с остатками текстолита, когда-то отодранной от старой платы. Установлена лампа мощностью 150 Вт.

Вот и паяльная станция готова.

Немного поигравшись могу сделать несколько заключений. Самим прикуяльником можно выпаивать микросхемы и без нижнего подогрева, но это занимает немного больше времени. Демонтировать мелкие smd-шки (резисторы, конденсаторы) можно при помощи только нижнего подогрева, в том случае если сама плата больше вам не нужна.

Дело в том, что здесь отсутствует термостабилизация и со временем плата начинает перегреваться, демонтаж большого количества элементов может растянутся на долго. Во время экспериментов, при демонтаже на нижнем подогреве, я перегрел плату, и она вздулась. Это вздутие сопровождалось хорошим хлопком, я как говорится, чуть не «письнул» от неожиданности.

Для разовых работ лучше не придумаешь.

И для того, чтобы показать, что это все-таки работает, предлагаю посмотреть следующие фотографии.

В качестве жертвы была выбрана старючая материнка. На ней выбран чип, вокруг которого расположено большое количество мелких компонентов, что затрудняет работу привычным инструментом. На следующей фотографии чип отпаян.

А вот фотографии в большом разрешении (фото кликабельно).

Ну и небольшое видео:

Хочу подвести черту под выше сказанным. Прикуяльник имеет право быть. Он конечно не претендует на звание «професиональный» инструмент, но со своими задачами справляется. И с сегодняшней архитектурой плат, любителю, он просто необходим.

Переменный резистор (реостат) — электрический аппарат, изобретённый Иоганном Христианом Поггендорфом, служащий для регулировки и получения требуемой величины сопротивления… Ну и бла-бла-бла… В двух словах, речь пойдет о том как, из подстроечного многооборотного резистора сделать полноценный переменный с возможностью крепления на панели прибора. Читать далее

Page 3

Ниже представлена инструкция по пользованию часов на газоразрядных индикаторах «Aurora». Это даст возможность понять функционал устройства, а для тех, кто повторил конструкцию не забыть, как этим пользоваться.

Читать далее

Это продолжение рассказа о создании моих первых часов на газоразрядных индикаторах. В первой статье была создана электронная начинка и мне показалось, что львиная доля работы уже позади. А нет…

Читать далее

Page 4

Готовь сани летом, делаем автомобильный тепловентилятор. Читать далее

В виду постоянно растущей цены на электроэнергию, приходится контролировать её расходы. В этом нам поможет небольшой, но очень полезный приборчик. Читать далее

Page 5

Лето, жара, пляж, водоем… Как всегда, стандартная программа. Искупался два раза и лежишь тюленем, скучно. А чем можно заняться на пляже если приехал без компании. Можно погонять катер на радиоуправлении! И себе забава и детям утеха. Читать далее

Page 6

Прошло уже полтора года с момента публикации «уникальной» статьи о доработке приемника советских времен VEF-202. У некоторых людей, все-таки, публикация вызвала некий интерес. И теперь на доработке у меня VEF-201 одного из читателей. Читать далее

Page 7

Когда надоедают «общественные» работы, хочется сделать, что-то бесполезное, для души, так, чтобы отвлечься. Из всех придуманных, но не воплощенных проектов, я выбрал маленькие колоночки, для телефона. Читать далее

Page 8

Долго думал как назвать статью, ремонт или модернизация…. Читать далее

Принесли как то китайский ночничек с просьбой поглядеть, поглядели…. Читать далее

Page 9

От момента публикации статьи про мои первые часы на газоразрядных индикаторах прошел почти год. Буквально сразу после запуска железа и более-менее рабочего ПО поступил отзыв о конструкции: «Прикольно получилось, но…. Если бы были в smd исполнении, я бы и себе сделал…».  Поразмыслив над этими словами принялся за дело. Читать далее

Page 10

Да будет свет, сказал монтер и…. залил пол фары воды в задний фонарь Nissan Qashqai. От чего и случилось несчастье с платой.

Читать далее

Источник: https://3dxsite.wordpress.com/2017/02/24/ir_station/

Изготовление инфракрасной паяльной станции своими руками

> Инструмент > Инфракрасная паяльная станция

Ремонт ноутбуков и видеокарт, реболлинг (демонтаж и монтаж чипа с восстановлением шариков припоя) без инфракрасной паяльной станции, как правило, не обходится. Сервисные центры за такую работу либо не берутся, либо взимают довольно большие деньги за такой ремонт. Между тем подобные поломки – явление довольно частое.

ИК паяльная станция

ИК станция заводского исполнения – устройство довольно дорогое, поэтому экономичнее сделать ее своими руками. Инфракрасную паяльную станцию можно сделать за один, максимум два дня, предварительно заказав через интернет и получив по почте комплектующие детали к ней.

Немного теории

При нормальной температуре пик электромагнитного излучения происходит в инфракрасной области. Вещи, которые горят, излучают как более интенсивное, так и более энергичное (более короткое) инфракрасное излучение. Когда становится очень жарко, они начинают светиться красным. Чем они горячее становятся, тем приобретают больше оранжевого и желтого цветов, затем синего.

Многие органические молекулы интенсивно поглощают инфракрасное излучение, это заставляет объект нагреваться. Тепло – это кинетическая энергия поступательного движения атомов и молекул. Излучаемый атомом свет имеет длину волны. В итоге нагретое тело тоже излучает свет, и чем сильнее нагрето тело, тем короче волна излучаемого света.

Для информации. Согласно закону смещения Вина, бывает так, что тепловое излучение объектов вблизи комнатной температуры находится в инфракрасной области. Сюда относятся лампочки и даже люди.

Итак, инфракрасное излучение – это не тепло, и оно (непосредственно) не вызывает тепло. Оно испускается теплом объекта при определенном диапазоне температур.

Инфракрасное излучение

Зрительные оттенки света обуславливаются длиной волны и ее направленностью, начиная с инфракрасного, потом красного, оранжевого, желтого…. фиолетового и кончая длиной волны ультрафиолетового излучения. И обратно тоже. Облучение тела светом вызывает усиление движения его молекул, любым светом, но инфракрасным, как самым длинноволновым, эффективнее всего.

ИК паяльная станция своими руками – это инфракрасный обогреватель, отдающий тепло в окружающую среду посредством инфракрасного излучения.

Тестер

Данный прибор нужен для работы, чтобы считывать информацию о температуре, которая возле чипа. К нему подключена обычная термопара, конец которой ставят возле чипа. На дисплее тестера будет отображена температура непосредственно возле чипа.

Важно! Провод от термопары заматывают термостойким скотчем, потому что оплетка проводов горит при высокой температуре.

Тестер для ИК станции своими руками

В итоге собранная на скорую руку самодельная ИК паяльная станция порядка десяти раз будет дешевле стоить, нежели готовое изделие. Устройство можно дорабатывать и постепенно улучшать.

Работа на практике

Работа устройства будет описана на примере починки платы от ноутбука. Одной из неисправностей платы является поломка видеочипа. Бывает достаточно прогреть его термофеном, и изображение на экране появляется.

Скорее всего, в этом случае происходит отвал кристалла от текстолита. Менять чип довольно дорого. Но если прогреть его, то срок службы ноутбука этим можно продлить.

На примере такого банального прогрева и может применяться самодельная инфракрасная паяльная станция.

Для начала плату подготавливают к прогреву, снимают детали:

  • пленки, потому что они при высокой температуре начинают плавиться;
  • процессор;
  • память.

Компаунд лучше снимать пинцетом после предварительного подогрева термофеном. Фен ставят при этом на температуру 1800, средний поток воздуха.

Важно! Всю окружающую область вокруг чипа необходимо обклеить фольгой, чтобы не греть элементы платы. На всякий случай следует закрыть и пластиковые разъемы для памяти.

Далее по периметру чипа наносят флюс RMA-223, тоже китайский. Купленный на AliExpress для таких целей подходит. Для удобства его перезаправляют в обычный шприц.

Для информации. Использование флюсов облегчает процесс пайки и предотвращает окисление металла спаиваемых элементов.

Плату в таком виде устанавливают на решетку нижнего подогрева паяльной станции. Возле чипа располагают термопару. Другая термопара находится вблизи с нагревателями, её задача считывать температуру их нагрева. Включают нижний подогрев на блоке управления. На тестере и PID контроллере появляются рабочие параметры.

Когда низ прогреется, нужно дождаться, чтобы температура вокруг чипа была не менее 1000, в зависимости от материала припоя. Если припой бессвинцовый, то желательно прогреть до 1100.

ИК станция своими руками

Расстояние между чипом и верхним нагревателем должно быть около 5 см. Центр чипа должен быть строго под центром верхнего нагревателя, потому что максимальная температура идет от центра в стороны.

Верхний нагреватель включают, когда температура возле чипа поднимется до 1100. Низ обычно прогревается 10 минут, затем включается верх, который должен нагреться до 2300.

На PID контроллере верхнее значение показывает текущую температуру, нижнее – температуру, которую необходимо достичь.

При достижении нужной температуры включают верхний нагреватель, который управляется диммером. Когда температура подойдёт ближе к 2300, мощность диммером нужно уменьшить. Это делается для того, чтобы нагрев слишком быстрый не был. Рекомендуется выдержать минуту при температуре 2300 и затем выключить устройство. Температура пойдет на спад.

Важно! Нагрев чипа должен происходить плавно, так же как и его остывание. Резких перепадов температур не должно быть.

Когда плата остынет, собирают ноутбук и включают. Должно все заработать. По такому же принципу можно сделать инфракрасный паяльник своими руками.

Инфракрасная паяльная станция своими руками подключается к домашней розетке. При этом с проводкой ничего страшного не происходит, поскольку мощность её небольшая. По затратам ИК паяльная станция своими руками обходится совсем недорого. Комплектующие детали можно заказать через интернет на AliExpress.

Индукционная паяльная станция

Источник: https://elquanta.ru/instrument/infrakrasnaya-payalnaya-stanciya.html

Понравилась статья? Поделить с друзьями: